Goto

Collaborating Authors

 Rotterdam


In pictures: Prayers and reflection mark Eid celebrations around the world

BBC News

Muslims around the world have begun celebrating Eid al-Fitr, one of the biggest celebrations in the Islamic calendar. Eid al-Fitr - which means "festival of the breaking of the fast" - is celebrated at the end of Ramadan, a month of fasting for many adults, as well as spiritual reflection and prayer.ReutersHere in Moscow, worshippers are seen preparing for prayer.ReutersHundreds took part in prayers at Tononoka grounds, in Mombasa, KenyaGetty ImagesPrayers were also observed at a stadium in Port Sudan in the east of the countryGetty ImagesLittle children joined adults at the Moskee Essalam in Rotterdam, NetherlandsGetty ImagesGifts are handed out to Muslim children in Lviv, Ukraine, as Russia's war on the country continuesReuters Palestinians in Jabaliya in the northern Gaza Strip pray amidst the rubble of a mosque destroyed in the current war between Israel and HamasGetty ImagesFamilies gather at al-Aqsa mosque in Jerusalem - the third holiest site in IslamReutersA boy yawns during prayers at a stadium in QatarEPAMuslims greet each-other at Martim Moniz Square in Lisbon, PortugalGetty ImagesWomen worshippers gather in Burgess Park, London, for an outdoor prayerEPAThere were also worshippers gathered outside Plebiscito Square in Naples, ItalyReutersSome women took pictures after attending prayers at the Hagia Sophia Grand Mosque in Istanbul, TurkeyGetty ImagesAfghan refugees pray at a mosque on the outskirts of Peshawar, PakistanMiddle EastEuropeEid al-FitrReligionIslamRelated'I was afraid for my life': At the scene of the attack on Palestinian Oscar winner 5 days agoMiddle EastMore8 hrs ago'In Bradford, families spend thousands on new clothes for Eid' Muslims spend large amounts in Bradford's supermarkets, clothes shops and other services before Eid.8 hrs agoEngland1 day ago The tourist has received an award from the city's mayor after restraining a man during a stabbing.1 day agoEurope1 day ago Another 21 people are injured, as a restaurant and several buildings are set ablaze in the city, local officials say.1 day agoWorld1 day ago Town's successful Ramadan lights project expanded A Scunthorpe community group says it has seen an "amazing" response to its lights display.1 day agoLincolnshire1 day ago Bishop says school that changed Easter events'valued' The BBC is not responsible for the content of external sites.


Forecasting Empty Container availability for Vehicle Booking System Application

arXiv.org Artificial Intelligence

Container terminals, pivotal nodes in the network of empty container movement, hold significant potential for enhancing operational efficiency within terminal depots through effective collaboration between transporters and terminal operators. This collaboration is crucial for achieving optimization, leading to streamlined operations and reduced congestion, thereby benefiting both parties. Consequently, there is a pressing need to develop the most suitable forecasting approaches to address this challenge. This study focuses on developing and evaluating a data-driven approach for forecasting empty container availability at container terminal depots within a Vehicle Booking System (VBS) framework. It addresses the gap in research concerning optimizing empty container dwell time and aims to enhance operational efficiencies in container terminal operations. Four forecasting models-Naive, ARIMA, Prophet, and LSTM-are comprehensively analyzed for their predictive capabilities, with LSTM emerging as the top performer due to its ability to capture complex time series patterns. The research underscores the significance of selecting appropriate forecasting techniques tailored to the specific requirements of container terminal operations, contributing to improved operational planning and management in maritime logistics.


Checklist

Neural Information Processing Systems

GBSG (Rotterdam & German Breast Cancer Study Group) requires prediction of survival time for breast cancer patients. METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) requires prediction of survival time for breast cancer patients. Covariates include expressions for four genes as well as clinical data. SUPPORT (Study to Understand Prognoses Preferences Outcomes and Risks of Treatment) requires prediction of survival time in seriously ill hospitalised patients. Covariates include demographic and basic diagnosis information. WHAS (Worcester Heart Attack Study) requires prediction of acute myocardial infraction survival. TMBImmuno (Tumor Mutational Burden and Immunotherapy) requires prediction of survival time for patients with various cancer types using clinical data. Covariates include age, sex, and number of mutations.


Lecture Notes on High Dimensional Linear Regression

arXiv.org Machine Learning

These lecture notes were developed for a Master's course in advanced machine learning at Erasmus University of Rotterdam. The course is designed for graduate students in mathematics, statistics and econometrics. The content follows a proposition-proof structure, making it suitable for students seeking a formal and rigorous understanding of the statistical theory underlying machine learning methods. At present, the notes focus on linear regression, with an in-depth exploration of the existence, uniqueness, relations, computation, and nonasymptotic properties of the most prominent estimators in this setting: least squares, ridgeless, ridge, and lasso. Background It is assumed that readers have a solid background in calculus, linear algebra, convex analysis, and probability theory.


Checklist

Neural Information Processing Systems

GBSG (Rotterdam & German Breast Cancer Study Group) requires prediction of survival time for breast cancer patients. METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) requires prediction of survival time for breast cancer patients. Covariates include expressions for four genes as well as clinical data. SUPPORT (Study to Understand Prognoses Preferences Outcomes and Risks of Treatment) requires prediction of survival time in seriously ill hospitalised patients. Covariates include demographic and basic diagnosis information. WHAS (Worcester Heart Attack Study) requires prediction of acute myocardial infraction survival. TMBImmuno (Tumor Mutational Burden and Immunotherapy) requires prediction of survival time for patients with various cancer types using clinical data. Covariates include age, sex, and number of mutations.


An Earth Rover dataset recorded at the ICRA@40 party

arXiv.org Artificial Intelligence

The ICRA conference is celebrating its $40^{th}$ anniversary in Rotterdam in September 2024, with as highlight the Happy Birthday ICRA Party at the iconic Holland America Line Cruise Terminal. One month later the IROS conference will take place, which will include the Earth Rover Challenge. In this challenge open-world autonomous navigation models are studied truly open-world settings. As part of the Earth Rover Challenge several real-world navigation sets in several cities world-wide, like Auckland, Australia and Wuhan, China. The only dataset recorded in the Netherlands is the small village Oudewater. The proposal is to record a dataset with the robot used in the Earth Rover Challenge in Rotterdam, in front of the Holland America Line Cruise Terminal, before the festivities of the Happy Birthday ICRA Party start.


AGI: Artificial General Intelligence for Education

arXiv.org Artificial Intelligence

Artificial general intelligence (AGI) has gained global recognition as a future technology due to the emergence of breakthrough large language models and chatbots such as GPT-4 and ChatGPT, respectively. Compared to conventional AI models, typically designed for a limited range of tasks, demand significant amounts of domain-specific data for training and may not always consider intricate interpersonal dynamics in education. AGI, driven by the recent large pre-trained models, represents a significant leap in the capability of machines to perform tasks that require human-level intelligence, such as reasoning, problem-solving, decision-making, and even understanding human emotions and social interactions. This position paper reviews AGI's key concepts, capabilities, scope, and potential within future education, including achieving future educational goals, designing pedagogy and curriculum, and performing assessments. It highlights that AGI can significantly improve intelligent tutoring systems, educational assessment, and evaluation procedures. AGI systems can adapt to individual student needs, offering tailored learning experiences. They can also provide comprehensive feedback on student performance and dynamically adjust teaching methods based on student progress. The paper emphasizes that AGI's capabilities extend to understanding human emotions and social interactions, which are critical in educational settings. The paper discusses that ethical issues in education with AGI include data bias, fairness, and privacy and emphasizes the need for codes of conduct to ensure responsible AGI use in academic settings like homework, teaching, and recruitment. We also conclude that the development of AGI necessitates interdisciplinary collaborations between educators and AI engineers to advance research and application efforts.


Spatial and Temporal Characteristics of Freight Tours: A Data-Driven Exploratory Analysis

arXiv.org Artificial Intelligence

This paper presents a modeling approach to infer scheduling and routing patterns from digital freight transport activity data for different freight markets. We provide a complete modeling framework including a new discrete-continuous decision tree approach for extracting rules from the freight transport data. We apply these models to collected tour data for the Netherlands to understand departure time patterns and tour strategies, also allowing us to evaluate the effectiveness of the proposed algorithm. We find that spatial and temporal characteristics are important to capture the types of tours and time-of-day patterns of freight activities. Also, the empirical evidence indicates that carriers in most of the transport markets are sensitive to the level of congestion. Many of them adjust the type of tour, departure time, and the number of stops per tour when facing a congested zone. The results can be used by practitioners to get more grip on transport markets and develop freight and traffic management measures.


A Data-driven and multi-agent decision support system for time slot management at container terminals: A case study for the Port of Rotterdam

arXiv.org Artificial Intelligence

Controlling the departure time of the trucks from a container hub is important to both the traffic and the logistics systems. This, however, requires an intelligent decision support system that can control and manage truck arrival times at terminal gates. This paper introduces an integrated model that can be used to understand, predict, and control logistics and traffic interactions in the port-hinterland ecosystem. This approach is context-aware and makes use of big historical data to predict system states and apply control policies accordingly, on truck inflow and outflow. The control policies ensure multiple stakeholders satisfaction including those of trucking companies, terminal operators, and road traffic agencies. The proposed method consists of five integrated modules orchestrated to systematically steer truckers toward choosing those time slots that are expected to result in lower gate waiting times and more cost-effective schedules. The simulation is supported by real-world data and shows that significant gains can be obtained in the system.


Autonomous Port Navigation With Ranging Sensors Using Model-Based Reinforcement Learning

arXiv.org Artificial Intelligence

Autonomous shipping has recently gained much interest in the research community. However, little research focuses on inland - and port navigation, even though this is identified by countries such as Belgium and the Netherlands as an essential step towards a sustainable future. These environments pose unique challenges, since they can contain dynamic obstacles that do not broadcast their location, such as small vessels, kayaks or buoys. Therefore, this research proposes a navigational algorithm which can navigate an inland vessel in a wide variety of complex port scenarios using ranging sensors to observe the environment. The proposed methodology is based on a machine learning approach that has recently set benchmark results in various domains: model-based reinforcement learning. By randomizing the port environments during training, the trained model can navigate in scenarios that it never encountered during training. Furthermore, results show that our approach outperforms the commonly used dynamic window approach and a benchmark model-free reinforcement learning algorithm. This work is therefore a significant step towards vessels that can navigate autonomously in complex port scenarios.